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Abstract

The stochastic interpolant framework offers a powerful approach for constructing generative
models based on ordinary differential equations (ODEs) or stochastic differential equations (SDEs)
to transform arbitrary data distributions. However, prior analyses of this framework have primarily
focused on the continuous-time setting, assuming a perfect solution of the underlying equations.
In this work, we present the first discrete-time analysis of the stochastic interpolant framework,
where we introduce an innovative discrete-time sampler and derive a finite-time upper bound
on its distribution estimation error. Our result provides a novel quantification of how different
factors, including the distance between source and target distributions and estimation accuracy,
affect the convergence rate and also offers a new principled way to design efficient schedules for
convergence acceleration. Finally, numerical experiments are conducted on the discrete-time sampler
to corroborate our theoretical findings.

1 Introduction
Stochastic interpolants Albergo and Vanden-Eijnden (2023); Albergo et al. (2023) provide a general
framework for constructing continuous mappings between arbitrary distributions. This framework
draws inspiration from flow-based and diffusion-based models, which generate samples by continuously
transforming data points from a base distribution to a target distribution via learned ordinary differential
equations (ODEs) or stochastic differential equations (SDEs).

Within the stochastic interpolant framework, one obtains learnable ODEs or SDEs that transport data
by defining an interpolation between data points sampled from different distributions. This framework
offers significant design flexibility and has demonstrated promising results in various applications,
including probabilistic forecasting Chen et al. (2024b), image generation Ma et al. (2024); Albergo et al.
(2024), and sequential modeling Chen et al. (2024a).

Despite its potential in real-world applications, there remains a gap between the theoretical analyses
and practical implementations of stochastic interpolants. In practical scenarios, instead of perfectly
solving the underlying equations, one can only access a learned estimator for a finite number of time
steps, which necessitates the use of discrete-time samplers to simulate the true continuous generation
process. However, previous analyses have largely focused on continuous-time generation, assuming
perfect solutions to the underlying equations. This leads to a crucial question for bridging the gap:

What is the convergence rate of discrete-time stochastic interpolant, and how to enhance
its performance algorithmically?

Similar problems have been studied in the theories of diffusion models, and most results were derived
based on Girsanov-based methods in SDE analyses, which reduce the problem to providing upper
bounds on the discretization errors. Specifically, existing analyses on the discretization errors can be
mainly categorized into two types. The first type partitions the error into space-discretization and
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time-discretization. Among them, Lee et al. (2022) and Chen et al. (2023d) assume a uniform Lipschitz
constant on the score function, while Chen et al. (2023a) do not, but they all utilize the Markovian
property and the Gaussian form of the diffusion process to obtain their results. The second type uses
Itô’s calculus to obtain upper bounds, such as Benton et al. (2024), who adapt existing results from
stochastic localization to produce tight bounds by finding the equivalence between two methods.

However, the aforementioned ideas do not apply to stochastic interpolants due to the following key
difference: the stochastic interpolant framework in consideration has a distinct structure introduced by a
random interpolation between two distributions instead of a linear combination of one distribution with
Gaussian, destroying the Markovian property. This difference not only necessitates novel analysis for the
discretization errors of score functions but also requires additional analysis to bound the discretization
errors for the velocity function, which arises from the general interpolation function introduced in this
context.

To tackle the above challenges, in this work, we offer the first finite-time convergence bound in
Kullback-Leibler (KL) error for the SDE-based generative model within the stochastic interpolant
framework. Our result presents a novel analysis building on existing Girsanov-based techniques. In the
analysis of discretization errors, one key highlight of our approach is modeling the evolution of discretized
terms via stochastic calculus. This allows us to decompose the discretization error into components
linked to derivatives of conditional expectation. Notably, we leverage the Gaussian latent variables
embedded within our stochastic interpolants, enabling the explicit representation of these derivatives as
conditional expectations, and hence providing a key solution to the challenges.

Our contributions. The main contributions of our paper are as follows.
(i) This work presents the first finite-time convergence bound for the SDE-based generative model

within the stochastic interpolant framework. Specifically, we formulate the discrete-time sampler using
the Euler–Maruyama scheme and derive a general error bound on the generative process, which notably
does not require Lipschitz assumptions on the score functions or velocity functions. This setting aligns
with recent analyses of score-based diffusion models that relax Lipschitz assumptions on the score
functions, such as those by Chen et al. (2023a) and Benton et al. (2024).

(ii) We propose a novel schedule of step sizes and rigorously bound the number of steps required
to achieve an ε2 KL-error. In the specific case where the base distribution ρ0 is Gaussian, where our
setting reduces to the standard diffusion model, our bound achieves the same order of dependence as
that by Chen et al. (2023a).

(iii) We implement the sampler with our proposed schedule and conduct a comparison against
using uniform step sizes. Our results validate the theoretical findings and demonstrate the superior
performance of our schedule when no additional regularity conditions are assumed.

2 Related Works
Stochastic Interpolants The concept of stochastic interpolants is introduced by Albergo and Vanden-
Eijnden (2023), establishing a framework for constructing generative models based on continuous-time
normalizing flows. Building upon this foundation, Albergo et al. (2023) extend the framework by
incorporating Gaussian noise into the interpolant, effectively unifying flow-based and diffusion-based
methods. Both Albergo and Vanden-Eijnden (2023) and Albergo et al. (2023) investigate the impact of
using estimators instead of the true velocities in the equations.

Following the stochastic interpolants framework, several works have focused on specific applications.
Albergo et al. (2024) utilize the framework to develop novel data coupling methods, addressing image
generation tasks such as in-painting and super-resolution. Chen et al. (2024b) and Chen et al. (2024a)
adapt the conditional generation framework with stochastic interpolants to tackle future state prediction
and sequential modeling problems, respectively.

Convergence Analysis of Diffusion Models Numerous results have been established on the
convergence rates of diffusion models under various data assumptions Bortoli (2023); Lee et al. (2022).
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Notably, Chen et al. (2023d) employ an approximation argument to apply Girsanov’s theorem in scenarios
where the Novikov condition does not hold. Based on this analysis, Chen et al. (2023d) and Chen et al.
(2023a) provide error bounds assuming Lipschitz score functions. Chen et al. (2023a) also develop a
KL error bound without requiring Lipschitzness assumptions, leveraging early stopping. This bound is
subsequently improved by Benton et al. (2024), achieving a ε2 KL error in Õ

(
d log2(1/δ)

ε2

)
steps, which

exhibits near-linear dependence on the dimension d. In addition to convergence rate analysis, several
works have focused on problems such as score approximation Chen et al. (2023b), improved DDPM
samplers Liang et al. (2024); Li et al. (2024b,a) and ODE-based methods Chen et al. (2023c).

3 Preliminaries: Stochastic Interpolants
In this paper, we consider continuous-time stochastic processes that bridge any two arbitrary probability
distributions in finite time. Formally, given two probability distributions ρ0 and ρ1 in Rd, a stochastic
interpolant Albergo et al. (2023); Albergo and Vanden-Eijnden (2023); Albergo et al. (2024) is a stochastic
process defined as:

xt = I(t, x0, x1) + γ(t)z, t ∈ [0, 1] (1)

where I is a twice-continuously differentiable interpolation function satisfying the boundary conditions
I(0, x0, x1) = x0 and I(1, x0, x1) = x1, and there exists a constant C > 0 such that for all t ∈ [0, 1] and
x0, x1 ∈ Rd,

∂tI(t, x0, x1) ≤ C∥x0 − x1∥. (2)

Here γ(t) is a time-dependent scale function with γ(t)2 ∈ C2[0, 1], γ(0) = γ(1) = 0, and γ(t) > 0
for t ∈ [0, 1]. This definition indicates that

∣∣ d
dt (γ

2(t))
∣∣ is bounded by a constant. (x0, x1) is drawn

from a joint measure ν with marginals ρ0 and ρ1, i.e., ρ0(dx0) = ν(dx0,Rd) and ρ1(dx1) = ν(Rd, dx1).
z ∼ N(0, Id) is a standard Gaussian variable independent of (x0, x1).

In the definition (1), I(t, x0, x1) represents the interpolation component, while γ(t)z introduces a
Gaussian latent term crucial for subsequent analysis. We denote the density of xt by ρ(t, ·) or simply
ρ(t). According to the construction, the stochastic interpolant satisfies ρ(0) = ρ0 and ρ(1) = ρ1. This
framework allows for a wide range of interpolation functions I(t, x0, x1) and scale functions γ(t), offering
significant flexibility in design.

Stochastic interpolants provide a framework for generative modeling through stochastic differential
equations. As shown by Albergo et al. (2023), when E(x0,x1)∼ν∥∂tI(t, x0, x1)∥4 and E(x0,x1)∼ν∥∂2

t I∥2
are bounded, the solution to the following forward SDE

dXF
t = bF (t,X

F
t )dt+

√
2ϵ(t)dWt, X0 ∼ ρ0 (3)

satisfies XF
t ∼ ρ(t) for all t ∈ [0, 1]. Here ϵ ∈ C[0, 1] is a non-negative function, and the drift term bF is

defined as
bF (t, x) = b(t, x) + ϵ(t)s(t, x),

b(t, x) = E[ẋt|xt = x]

= E[∂tI(t, x0, x1) + γ̇(t)z|xt = x],

s(t, x) = ∇ log ρ(t, x) = −γ−1(t)E[z|xt = x].

(4)

In the definition (4), s(t, x) is the well-known score function, and b(t, x) represents the mean velocity
field of (1) (following the notations of Albergo et al. 2023). This implies that a process starting from ρ0
and evolving according to the forward SDE (3) will have density ρ(t) at time t. Consequently, at time
t = 1, the process will have the desired target density ρ1. This establishes a stochastic mapping from ρ0
to ρ1, providing a foundation for generative modeling.

Following Albergo et al. (2023), we further introduce the velocity function v(t, x) as:

v(t, x) = E[∂tI(t, x0, x1)|xt = x]

= b(t, x) + γ̇γs(t, x).
(5)
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Both b(t, x) and bF (t, x) can be expressed as linear combinations of v(t, x) and s(t, x). The function ϵ(t)
controls the level of randomness in the mapping from ρ0 to ρ1. When ϵ(t) ≡ 0 the SDE reduces to an
ODE. We assume ϵ(t) = ϵ is a constant without loss of generality, similar to Albergo et al. (2023) and
dos Santos Costa et al. (2024).

Connection with Diffusion Models. Consider the special case where x0 and x1 are independent,
with x0 ∼ N(0, Id). Let I(t, x0, x1) = (1 − t)x0 + tx1 and γ(t) =

√
2t(1− t). Then, the stochastic

interpolant can be expressed as
xt = tx1 +

√
1− t2z

where z ∼ N(0, Id) is another standard Gaussian variable independent of x1. Diffusion models Song
et al. (2021) employ the Ornstein–Uhlenbeck (OU) SDE:

dYs = −Ysds+
√
2dWs, Y0 ∼ pdata

which gradually adds noise to the data distribution pdata. Given Y0, Ys can be written as

Ys = e−sY0 +
√
1− e−2sZ, Z ∼ N(0, Id).

Therefore, if we choose x1 ∼ pdata in the stochastic interpolant, Ys and xe−s have the same distribution.

Previous Theoretical Results For SDE-based generative models, Albergo et al. (2023) provide the
following KL error bound when an estimator b̂F (t,X

F
t ) is used instead of the true drift term bF (t,X

F
t )

in the SDE. This bound, which can also be derived using Girsanov’s Theorem Chen et al. (2023d); Oko
et al. (2023), is given by:

KL(ρ(1)∥ρ̂(1)) ≤ 1

4ϵ

∫ 1

0

∫
Rd

∥b̂F (t, x)

− bF (t, x)∥2ρ(t, x)dxdt.

This inequality establishes an upper bound on the distribution estimation error in terms of the error
in estimating the drift function bF (t,X

F
t ). This estimation error is evaluated with respect to the true

underlying density ρ(t, x).
The primary limitation of the existing results is the assumption that the SDEs can be solved exactly

(e.g., Chen et al. 2024b; Albergo et al. 2023). However, obtaining exact solutions is often challenging
in practice, leading to the use of discrete-time samplers for estimating these solutions. Yet, when an
SDE is discretized, discretization error causes distribution estimation error, which ultimately invalidates
previous results. Moreover, the choice of discretizations can have a significant impact on the convergence
of the dynamics, (see, e.g., Wibisono et al. 2016), leaving the design of optimal discretization methods
largely open.

4 Main Results
In this section, we present a novel analysis for the discrete-time stochastic interpolant framework.
Specifically, we focus on the following formulation: given a schedule {tk}Nk=0 ⊆ [0, 1] where t0 < t1 <
· · · < tN−1 < tN , we define an estimated process using the following SDE:

dX̂F
t = b̂F (tk, X̂

F
tk
)dt+

√
2ϵdWt, t ∈ [tk, tk+1). (6)

In practice, we can express this as:

XF
tk+1

=XF
tk

+ (tk+1 − tk )̂bF (tk, X̂
F
tk
)

+
√

2ϵ(tk+1 − tk)wk, wk ∈ N(0, Id)
(7)
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for k = 0, 1, . . . , N − 1. Here b̂F (t,X
F
t ) represents an estimator of the true drift term bF . Equation (6),

or equivalently (7), corresponds to the Euler-Maruyama discretization of the continuous-time SDE Chen
et al. (2023a,b). In this paper, we refer to (6) as the estimated SDE, while (3) is referred to as the true
SDE.

Below, we present our analysis for the discrete-time stochastic interpolant. We begin by introducing
the main assumptions, which will be crucial for bounding the error between the estimated distribution
and the true target distribution.

Assumption 1. The joint measure ν defined in the stochastic interpolants (1) satisfies E
(x0,x1)∼ν

∥x0 −

x1∥8 < ∞, and the interpolation function is such that

E
(x0,x1)∼ν

∥∂2
t I(t, x0, x1)∥2 ≤ M2 < ∞, ∀t ∈ [0, 1].

The first moment bound assumes that the initial and target distributions, ρ0 and ρ1, are not
excessively far apart. In fact, the inequality (2) further implies that E∥∂tI(t, x0, x1)∥8 < ∞ for any
t ∈ [0, 1]. The second part of the assumption ensures that the time derivative of the interpolation
function does not exhibit significant variations. Assumption 1 is similar to previous assumptions on
stochastic interpolants, with the exception of the first part, which utilizes the eighth moment instead of
the fourth moment (see Albergo et al. 2023 or Appendix A).

Assumption 2. The estimator b̂F satisfies

N−1∑
k=0

(tk+1 − tk)E∥b̂F (tk, xtk)− bF (tk, xtk)∥2 ≤ ε2bF ,

where the expectations is taken over xtk ∼ ρ(tk).

Assumption 2 assumes that we have a sufficiently accurate estimator for the drift term bF (t, x) at
the discretized time points. This assumption is analogous to common assumptions employed in the
theoretical analysis of diffusion models Benton et al. (2024); Chen et al. (2023a).

Now we are ready to present our main theorem.

Theorem 3. Suppose we start with an initial distribution ρ̂(t0) and evolve the process according to the
estimated SDE (6) with ϵ = O(1) until time t = tN . Let ρ̂(tN ) be the distribution obtained at time t = tN .
Denote the ground truth marginal distributions by {ρ(t)}t∈[0,1], and define γk = mint∈[tk,tk+1] γ(t). We
have under Assumptions 1 and 2 that:

KL(ρ(tN )∥ρ̂(tN ))

≲ KL(ρ(t0)∥ρ̂(t0)) + ε2bF + ϵ−1
N−1∑
k=0

(tk+1 − tk)
3

·
[
M2 + γ−6

k d3 + γ−2
k d

√
E∥x0 − x1∥8

]
+

N−1∑
k=0

(tk+1 − tk)
2γ−2

k d
[√

E∥x0 − x1∥4 + γ−2
k d

]
Here the notation f ≲ g denotes f = O(g).

Theorem 3 provides the first finite-time error bound for the discrete-time stochastic interpolant
framework (3), i.e., SDE (6). It explicitly quantifies the impact of the initial distribution mismatch (i.e.,
KL(ρ(t0)∥ρ̂(tN ))) and the bF estimation error (i.e., ε2bF ), demonstrates their dependence on the choice
of latent scale γ(t) and the time discretization schedule {tk}Nk=0. Notably, the bound offers a novel
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theoretical explanation for how the convergence behavior depends on the distance between the source
and destination distributions, as reflected in the terms involving E∥x0 − x1∥p with p = 4 and p = 8.

Now we explain the terms in Theorem 3.
The terms (tk+1 − tk)

3
[
M2 + γ−2

k d
√
E∥x0 − x1∥8

]
and (tk+1 − tk)

2γ−2
k d

√
E∥x0 − x1∥4 quantify the

discretization error associated with the velocity function v(t, x) (Eq. (5)), which is a component of the
drift term bF (t, x). Notably, the distance of form E∥x0 −x1∥p is involved here, highlighting the influence
of the distance between the source and target distributions on the discretization error.

Conversely, the terms (tk+1 − tk)
3γ−6

k d3 and (tk+1 − tk)
2γ−4

k d2 quantify the discretization error
arising from the score function s(t, x). This component of the discretization error exhibits a stronger
dependence on the latent scale γ(t) and the data dimension d. Specifically, assuming sufficiently small
step sizes, the dependence of the score discretization error on γ(t) is γ−4

k (if we assume sufficiently small
step sizes), which aligns with the findings for diffusion models Chen et al. (2023a); Benton et al. (2024).

Since γ(0) = γ(1) = 0, the discretization error will become unbounded if we were to simulate the
estimated SDE (6) from t0 = 0 to tN = 1. To address this, we choose 0 < t0 < tN < 1 to ensure that
γk is lower bounded, thereby maintaining a finite discretization error bound in Theorem 3. Under this
approach, the SDE is simulated within the interval [t0, tN ], and an estimation of ρ(tN ) is obtained
instead of ρ1. This is acceptable when tN is sufficiently close to 1, as ρ(tN ) will be sufficiently close to
ρ1 (e.g., in terms of Wasserstein distance). This practice of choosing tN < 1 is analogous to the early
stopping technique commonly employed in diffusion models Song et al. (2021); Chen et al. (2023a);
Benton et al. (2024).

The term KL(ρ(t0)∥ρ̂(t0)) quantifies the effect of choosing a slightly different base distribution. As
discussed earlier, we typically choose t0 > 0, and in many cases, the true base distribution ρ(t0) may not
be readily available. This bound theoretically supports the use of a similar base distribution ρ̂(t0) as an
approximation for the true base distribution.

Finally, the term ε2bF accounts for the error in estimating the drift term bF (t, x). Compared to
previous continuous-time analyses of the stochastic interpolant framework, which typically measure the
estimation error by an averaged error over the entire time interval Albergo and Vanden-Eijnden (2023);
Albergo et al. (2023), our analysis evaluates the estimation error using a weighted average of the errors
at the discretized time points.

The bound provided by Theorem 3 explicitly depends on the choice of latent scale γ(t) and the time
schedule {tk}Nk=0. This dependence can be leveraged to assess the computational complexity for a given
time schedule under a specific choice of γ(t). In Section 5, we will develop a time schedule that achieves
a fast convergence rate.

We now provide a proof sketch for Theorem 3.

Proof Sketch of Theorem 3 The proof of Theorem 3 contains two key steps. In step one, we
establish a bound on the KL divergence due to discretization error in the drift term bF (t, x) of the
SDE, based on Girsanov’s theorem. Then, in step two, we exploit special structure of the bF (t, x) by
expressing its derivatives as conditional covariances, enabling the application of relevant expectation
inequalities and eventually bounding the discretization error.

Step One: Bounding the KL-divergence with Discretization Error. Leveraging the results
provided by Chen et al. (2023d) (see Proposition 18), which are derived using Girsanov’s theorem, we
obtain the following bound:

KL(ρ(tN )∥ρ̂(tN ))

≤ KL(ρ(t0)∥ρ̂(t0)) + KL(P∥Q)

= KL(ρ(t0)∥ρ̂(t0))︸ ︷︷ ︸
Initialization error

+
1

4ϵ

N−1∑
k=0

∫ tk+1

tk

E[∥bF (t,XF
t )− b̂F (tk, X

F
tk
)∥2]dt

6



where P and Q represent the path measures of the solutions to the true SDE (3) and estimated SDE
(6), respectively, both with the same initial distribution ρ(t0). Applying the triangle inequality yields:

E[∥bF (t,XF
t )− b̂F (tk, X

F
tk
)∥2]

≤ 2E[∥bF (t,XF
t )− bF (tk, X

F
tk
)∥2]︸ ︷︷ ︸

Discretization error

+ 2E[∥bF (tk, XF
tk
)− b̂F (tk, X

F
tk
)∥2︸ ︷︷ ︸

Estimation error

]

The second term on the right-hand-side corresponds to the estimation error of b̂F (t, x), and its summation
can be bounded by ε2bF according to Assumption 2. The first term, on the other hand, represents the
discretization error associated with bF (t, x) and requires further analysis.

Step Two: Bound the Discretization Error. We now bound the discretization error above. A
central tool in this part is the Itô’s formula. By applying Itô’s formula, we obtain:∫ t

tk

dbF (s,XF
s ) =

∫ t

tk

∂sbF (s,X
F
s )ds

+

∫ t

tk

∇bF (s,X
F
s ) · bF (s,XF

s )ds

+

∫ t

tk

ϵ∆bF (s,X
F
s )ds

+

∫ t

tk

√
2ϵ∇bF (s,X

F
s ) · dWs.

(8)

While the application of Itô’s formula is analogous to that of Benton et al. (2024), we refrain from
eliminating the three linear terms due to their more complex forms in the context of stochastic interpolants.
Instead, we apply Jensen’s inequality on the integrals with respect to time and apply Itô’s isometry
(Le Gall 2016, Equation 5.8) on the integral with respect to Brownian motion, so that we can bound the
term by the derivatives of bF (t, x) (i.e., terms like ∂tbF (t, x) and ∇xbF (t, x), see Lemma 17).

Since bF (t, x) can be expressed as a linear combination of v(t, x) and s(t, x), it remains to bound
the derivatives of both v(t, x) and s(t, x), respectively. Note that v(t, x) and s(t, x) can be written as
the conditional expectations of ∂tI and γ−1z = xt−I

γ2 given xt = x. To bound the derivatives of these
conditional expectations, we employ the following key equality:

∂αE[f |xt = x] = E[∂αf |xt = x]

+ Cov(f, ∂α[−∥x− I∥2/2γ2]|xt = x).

Here α can represent either x or t. This equality crucially relies on the Gaussian latent term γ(t)z
introduced in the stochastic interpolant framework. This generalizes the result for s(t, x) = ∇ log ρ(t, x) =
E[γ−2(I − xt)|xt = x] in diffusion models, as found in previous works (see, e.g., Bortoli 2023; Benton
et al. 2024). We apply this equality extensively and derive bounds for both s(t, x) and v(t, x), where the
function v(t, x) does not appear or appears in a much simpler form (such as x) in the context of diffusion
model theories. Subsequently, we apply a series of inequalities to ultimately bound the expectation over
xt. Detailed derivations and proofs can be found in B.

5 Schedule Design for Faster Convergence
In Theorem 3, we provide an upper bound on the KL divergence from the target distribution to the
estimated distribution for a general class of SDE-based generative models. Since the bound depends on
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the choice of latent scale γ(t) and schedule {tk}Nk=0, we are able to carefully design a time schedule for a
given latent scale, thereby achieving a provably bounded error within a minimum number of steps.

Specifically, we consider the common choice of latent scale in stochastic interpolants, γ(t) =√
at(1− t), which is first introduced in Albergo et al. (2023). This choice is equivalent to chang-

ing the definition
xt = I(t, x0, x1) + γ(t)z

to
xt = I(t, x0, x1) +

√
adBt,

where Bt is a standard Brownian bridge process independent of (x0, x1). For this γ(t), we present the
following time schedule to optimize the sample complexity.

Exponentially Decaying Time Schedule As suggested by Theorem 3, smaller steps need to be
taken in order to balance the error terms. Moreover, to exactly cancel the γ-terms, we need hk = O(γ2

k)
where γ is defined in Theorem 3. Hence, we propose an exponentially decaying time schedule inspired
by the approach of Benton et al. (2024). Specifically, we first select a midpoint tM = 1

2 . Let h ∈ (0, 1)
be a parameter that controls the step size. We then define the time steps as follows:

tk+1 − tk =

{
1
2h(1− h)M−k−1, k < M
1
2h(1− h)k−M , k ≥ M.

This leads to

tk =

{
1
2 (1− h)M−k, k < M

1− 1
2 (1− h)k−M , k ≥ M.

The parameter h determines the overall scale of the step sizes. A smaller h results in a finer discretization
of the time interval.

Let hk = tk+1 − tk denote the step size at the k-th step. We observe that

hk = O(hmin{tk, 1− tk+1}) = O(hγ2
k),

which satisfies the condition of canceling the γ-terms. Moreover, the total number of steps is given by

N = O

(
log(1/t0) + log(1/(1− tN ))

log(1/(1− h))

)
= O

(
h−1 log

(
1

t0(1− tN )

))
.

Now we can provide the following bound:

Proposition 4. Consider the same settings as in Theorem 3. Suppose hk = tt+1 − tk = O(hγ2),
ϵ = Θ(1) and h = O( 1d ). Then, we have

KL(ρ(tN )∥ρ̂(tN )) ≲ ε2bF + KL(ρ(t0)∥ρ̂(t0))

+ hd
√

E∥x0 − x1∥4 +Nh2d2.

Proposition 4 provides the KL error bound when the step sizes is chosen so that the γ-terms are
canceled.

Corollary 5. Using γ =
√
at(1− t) and the time schedule defined above, suppose that KL(ρ(t0)∥ρ̂(t0)) ≤

ε2 and ε2bF ≤ ε2. Furthermore, assume that ϵ = Θ(1) and h = O( 1d ). Then, under the same settings as
in Theorem 3, the total number of steps required to achieve KL(ρ(tN )∥ρ̂(tN )) = O(ε2) is:

N = O

{
1

ε2

[√
E∥x0 − x1∥4d log

(
1

t0(1− tN )

)
+d2 log2

(
1

t0(1− tN )

)]}
.
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Corollary 5 provides the computational complexity of sampling data using the forward SDE. For a fixed
error bound ε, the complexity scales proportionally to ε−2. We can further decompose the complexity into
distance-related complexity and Gaussian diffusion complexity. Here O

(
1
ε2

√
E∥x0 − x1∥4d log

(
1

t0(1−tN )

))
is the distance-related complexity representing the number of steps required to achieve a sufficiently
small discretization error associated with the velocity function v(t, x). O

(
1
ε2 d

2 log2
(

1
t0(1−tN )

))
is the

Gaussian diffusion complexity representing the number of steps required to achieve a sufficiently small
discretization error associated with the score function s(t, x).

We briefly explain how to obtain this complexity. First, given a desired number of steps N , we select

h = Θ

(
N−1 log

(
1

t0(1− tN )

))
to achieve the specified number of steps. Since hk = O(γ2

kh), we have:

N−1∑
k=0

h3
k

[
M2 + γ−6

k d3 + γ−2
k d

√
E∥x0 − x1∥8

]
≤ Nh3d3 + h2

(
M2 + d

√
E∥x0 − x1∥8

)
,

and
N−1∑
k=0

(
h2d2 + hkhd

√
E∥x0 − x1∥4

)
≤ Nh2d2 + hd

√
E∥x0 − x1∥4.

By substituting the chosen value of h for the given N into Theorem 3, we can derive the stated complexity
bound.

Comparison to a Uniform Schedule. To highlight the benefits of our proposed exponentially
decaying time schedule, we compare it with a natural uniform schedule that satisfies hk = tN−t0

N ≈ 1
N .

We further assume the ideal case where ε2bF = 0 and ρ(t0) = ρ̂(t0) in our analysis.
According to Theorem 3, the error bound for the uniform schedule is given by

N−1∑
k=0

h3
k(M2 + γ−6

k d3 + γ−2
k d

√
E∥x0 − x1∥8)

+

N−1∑
k=0

h2
k(γ

−4
k d2 + γ−2

k d
√
E∥x0 − x1∥4).

Since γ2
k = Θ(min{tk, 1− tk+1}), and noting that∫ 0.5

δ

t−pdt =

{
Θ(log(1/δ)), p = 1

Θ(δ−(p−1)), p > 1

for a uniform schedule, the overall error bound becomes:

KL(ρ(tN )∥ρ̂(tN ))

= O

(
1

N

[√
E∥x0 − x1∥4d log

(
1

t0(1− tN )

)
+

1

t0(1− tN )
d2
])

.
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Figure 1: An illustration of the interpolants. We choose I(t, x0, x1) = (1−t)x0+tx1 and γ(t) =
√

2t(1− t).
The first row of graphs shows the densities given by (1). The second row of graphs shows the estimated
densities using SDE (6), where the estimator b̂F is learned by a neural network.

Consequently, the complexity of using a uniform schedule is given by

N = O

(
ε−2

[
log

(
1

t0(1− tN )

)
d
√
E∥x0 − x1∥4

+
1

t0(1− tN )
d2
])

,

which exhibits a higher computational complexity compared to the proposed exponentially decaying
schedule.

Comparison to Diffusion Models Results. By setting I(t, x0, x1) = (1 − t)x0 + tx1, γ(t) =√
2t(1− t), x0 ∼ ρ0 = N(0, Id), and assuming that x0 and x1 are independent, the stochastic interpolant

reduces to xt =
√
1− t2z + tx1 for some z ∼ N(0, Id), which fits the diffusion model setting Song et al.

(2021). Assuming that the fourth moment of ρ1 is bounded by a constant (see Appendix C.5 for details),
the complexity of our approach simplifies to

N = O

(
ε−2d2 log2

(
1

1− tN

))
.

For diffusion models with an early stopping time δ, Chen et al. (2023a) established a complexity
bound of Õ

(
ε−2d2 log2

(
1
δ

))
. By setting δ = 1 − tN in our analysis, we recover the same complexity

bound as that obtained for diffusion models. While Benton et al. (2024) further improves the complexity
bound for diffusion models to Õ

(
ε−2d log2

(
1
δ

))
by leveraging techniques from stochastic localization,

these techniques heavily rely on the Gaussian structure of diffusion models and cannot be directly
applied to the more general stochastic interpolant framework.

Other Choices of γ(t). In addition to the commonly used γ(t) =
√
at(1− t), our framework can

readily be extended to analyze other choices of γ(t). In Appendix C.6, we present an analysis for
γ2(t) = (1−s)2s, which is equivalent to the definition in Chen et al. (2024b). We show that the proposed
time schedule in Appendix C.6 also outperforms the uniform schedule in terms of computational
complexiting the effectiveness of our schedule design, demonstrating the effectiveness of our schedule
design.

6 Numerical Experiments
In this section, we conduct experiments to validate our theoretical results. We implement the discretized
sampler as defined in Equation (7), and evaluate its performance on on two-dimensional datasets

10



(a) An illustration of generation results using dif-
ferent schedules.

(b) A view of different ρ0 and their effects on the
convergence rate.

Figure 2: A visualization of experiments.

(a) Different schedules. (b) Different ρ0 and ν.

Figure 3: Estimated TV distances. The x-axis refers to the number of steps, while the y-axis refers to
the empirical TV distance between estimated distribution ρ̂(tN ) and target distribution ρ(tN ). Figure 3a
compares the exponentially decaying schedule (red line) with the uniform schedule (green line). Figure 3b
compares different settings of ρ0 and ν (setting A: red line; setting B: green line).

(primarily from Grathwohl et al. 2019). The experiments focus on the following two aspeccts: (i) the
convergence rate using the exponentially decaying schedule, and (ii) the effect of choosing different ρ0 as
base densities, which is reflected by the distribution distance terms in our bound.

We employ I(t, x0, x1) = tx1 + (1− t)x0, γ(t) =
√
2t(1− t) and ϵ = 1 in our experiments. Figure 1

presents a visualization of the interpolants and the estimated densities generated using the forward SDE.
As we can see in Figure 1, the density defined by the stochastic interpolant progressively changes from
the checkerboard density to the spiral density, and the estimated density given by SDE (6) well tracks
the change of the real density.

Comparison of Different Time Schedules We now compare the performance of different schedules,
namely, those proposed in Section 5 and the uniform step sizes. The task involves transforming from
a "checkerboard" density to a "spiral" density. As illustrated in Figure 2a, employing exponentially
decaying step sizes results in about 10× faster convergence of the target density compared to using
uniform step sizes.

To quantitatively assess this, we estimate the total-variation (TV) distances between the target
density and the generated densities using sampled data points, as direct computation of logarithmic
densities is infeasible. We choose the TV distance due to Pinsker’s inequality, which bounds the squared
TV distance by the KL divergence. The lower bound observed in the estimated distances is attributed
to the estimation error ε2bF and the inherent randomness in the TV distance estimation process. Both
Figure 2a and Figure 3a corroborate the superior convergence performance of exponentially decaying
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step sizes.

Effect of Different Distribution Distances Second, we investigate the impact of different source
densities (ρ0) and couplings (ν) on the complexity of the generation process while keeping the target
density (ρ1) fixed. The densities are shown in 2b, where we have two source densities, namely “A” and
“B”. Each “block" in ρ0 is coupled with the corresponding “block" in ρ1 in the same vertical position.

Figure 3b shows the estimated TV distances between the generated data distribution and the target
distribution for both scenarios. For both choices of ρ0, we utilized the exponentially decaying step size
schedule. The results demonstrate that the generation process converges faster when the source density
(ρ0) is closer to the target density (ρ1) under the specified coupling (ν). In contrast, the generation
process converges slower when the source density is farther away from the target density. This observation
highlights the influence of the initial distribution and the coupling structure on the overall convergence
behavior.

7 Conclusion and Future Directions
This paper provides the first discrete-time analysis for the SDE-based generative models within the
stochastic interpolant framework. We formulate a discrete-time sampler using the Euler–Maruyama
scheme to estimate the target distribution by leveraging learned velocity estimators. We then provide an
upper bound on the KL divergence from the target distribution to the estimated distribution. Our result
provides a novel quantification on how different factors, including the distance between source and target
distributions

√
Eν∥x0 − x1∥p and the desired estimation accuracy ε2, affect the convergence rate and

also offers a new principled way to design efficient schedule for convergence acceleration. Finally, we also
conduct numerical experiments with the discrete-time sampler, which validates our theoretical findings.

Future research avenues can fruitfully explore the enhancement of convergence bounds, with a
particular focus on addressing the dependency on the dimension d. Notably, diffusion models are
demonstrated by previous works to exhibit near d-linear convergence rates, indicating the potential for
improvement. Another direction is to investigate strategies for refining the sampling algorithm to attain
convergence rates superior to the currently observed O(ε−2). Furthermore, the finite-time convergence
phenomenon of ODE-based generative models within the context of the stochastic interpolant framework
warrants a more comprehensive investigation.
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Notations
We use ∥ · ∥ to denote ℓ2 norm for both vectors and matrices. For a matrix A, we use ∥A∥F =

√∑
ij A

2
ij

to denote the Frobenious norm of A. We use d
du , ∂

∂u , or just ∂u to denote the (partial) derivative with
respect to u. We use ∇ to denote the gradient or Jacobian, depending on whether the function is
scalar-valued or vector-valued. If not specified, for the function in form of f(t, x) where t is a scalar
and x is a vector, ∇f(t, x) means the gradient vector or Jacobian matrix with respect to x rather than
t. We use ∆f(t, x) =

∑d
i=1

∂2

∂x2
i
f as the Laplace operator. We use E[X] to denote the expectation of

a random variable X, and Cov(X,Y ) to denote the covariance of two random variables X,Y . E[X|c]
and Cov(X,Y |c) denote the corresponding conditional expectation and conditional covariance given
condition c. We use the notation f(x) ≲ g(x) or f(x) = O(g(x)) to denote that there exists a constant
C > 0 such that f(x) ≤ Cg(x).

A Supplementary Details for Section 3
This part summarizes some of the results from Albergo et al. (2023) that are not introduced in Section 3.

Proposition 6. (Albergo et al. (2023), Theorem 2.6, Corollaries 2.10 and 2.18, and their proofs)
Suppose that the joint measure ν and the function I satisfies

E
(x0,x1)∼ν

∥∂tI(t, x0, x1)∥4 ≤ M1 < ∞, E
(x0,x1)∼ν

∥∂2
t I(t, x0, x1)∥2 ≤ M2 < ∞, ∀t ∈ [0, 1]. (9)

Then, ρ ∈ C1((0, 1), Cp(Rd)), s ∈ C1((0, 1), (Cp(Rd))d) and b ∈ C0((0, 1), (Cp(Rd))d), and both the
solution of the probability flow ODE

d
dt

Xt = b(t,Xt), X0 ∼ ρ0

and the solution of the forward SDE

dXF
t = bF (t,X

F
t )dt+

√
2ϵ(t)dWt, XF

0 ∼ ρ0

have the same marginal densities as (xt)t∈[0,1]. Here ϵ ∈ C[0, 1] with ϵ(t) ≥ 0 for all t ∈ [0, 1] and bF is
defined as

bF (t, x) = b(t, x) + ϵ(t)s(t, x). (10)

Moreover, suppose that the densities ρ0, ρ1 are strictly positive elements of C2(Rd), and are such that∫
Rd

∥∇ log ρ0(x)∥2ρ0(x)dx < ∞,

∫
Rd

∥∇ log ρ0(x)∥2ρ1(x)dx < ∞.

Then ρ ∈ C1([0, 1], Cp(Rd)), s ∈ C1([0, 1], (Cp(Rd))d) and b ∈ C0([0, 1], (Cp(Rd))d). The notation is
adapted from Albergo et al. (2023) where f ∈ C1([0, 1], Cp(Rd)) means that the function f is C1 in
t ∈ [0, 1] and Cp in x ∈ Rd.

The above proposition provides a generative modeling in the form of

d
dt

Xt = b(t,Xt)

and
dXF

t = bF (t,X
F
t )dt+

√
2ϵ(t)dWt.

In practice, we need to train an estimator to estimate velocity functions. By the following proposition,
we can use the optimization objectives to train the estimators.
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Proposition 7. (Albergo et al. (2023), Theorems 2.7 and 2.8) b is the unique minimizer of

Lb [̂b] =

∫ 1

0

E
[
1

2
∥b̂(t, xt)∥2 − (∂tI(t, x0, x1) + γ̇(t)z) · b̂(t, xt)

]
dt,

and s is the unique minimizer of

Ls[ŝ] =

∫ 1

0

E
[
1

2
∥ŝ(t, xt)∥2 + γ−1(t)z · ŝ(t, xt)

]
dt.

Here the notation “·" represents the inner product of two vectors.

B Bounding the Velocities and Scores

B.1 Useful Lemmas
To begin with, we first provide moment bounds on the Gaussian variable z ∼ N(0, Id).

Lemma 8. For any p ≥ 1,
E∥z∥2p ≤ C(p)dp,

where C(p) is a constant that only depends on p.

Proof. First, ∥z∥2 =
∑n

i=1 z
2
i , where we represent z = (z1, z2, · · · , zd)T . For any n positive numbers

a1, a2, . . . , an, using Jensen’s inequality,(
n∑

i=1

ai

)p

= np

(
1

n

n∑
i=1

ai

)p

≤ np · 1
n

n∑
i=1

api .

Then,

E∥z∥2p = E

[(
d∑

i=1

z2i

)p]

≤ dp · 1
d

d∑
i=1

E[|zi|2p] (Jensen’s inequality)

≤ dpE
[
|z1|2p

]
({zi}di=1 are i.i.d.)

= C(p)dp.

Here the constant
C(p) =

∫ ∞

−∞

1√
2π

e−
x2

2 |x|2pdx < ∞

only depends on p.

Also, the following is another simple fact that is useful for our analysis.

Lemma 9. For two vectors u ∈ Rn, v ∈ Rm, the matrix uvT ∈ Rn×m satisfies

∥uvT ∥F = ∥u∥ · ∥v∥,

where ∥ · ∥F denotes the Frobenious norm and ∥ · ∥ denotes the 2-norm.
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Proof. By the definition of the Frobenious norm,

∥uvT ∥2F =

n∑
i=1

m∑
j=1

(uvT )2ij

=

n∑
i=1

m∑
j=1

u2
i v

2
j

=

n∑
i=1

u2
i ·

m∑
j=1

v2j

= ∥u∥2 · ∥v∥2.

Recall that we have defined v(t, x) = E[∂tI(t, x0, x1)|xt = x]. We then give bounds for the score
functions and the velocity functions.

Lemma 10. For p ≥ 1, there exists a constant C(p) that depends only on p, s.t. for t ∈ (0, 1),

E∥s(t, xt)∥p ≤ C(p)γ−pdp/2,

E∥v(t, xt)∥p ≤ C(p)E∥x1 − x0∥p,

E∥b(t, xt)∥p ≤ C(p)
[
E∥x1 − x0∥p + γ̇dp/2

]
,

E∥bF (t, xt)∥p ≤ C(p)
[
E∥x1 − x0∥p + (γ̇p − γ−pϵp)dp/2

]
.

Proof. When p ≥ 1, use the conditional expectation form of s and v and apply Jensen’s inequality, we
then obtain

E∥s(t, xt)∥p = E∥γ−1E[z|xt = x]∥p ≤ γ−pE∥z∥p ≤ C(p)γ−pdp/2,

E∥v(t, xt)∥p = E∥E[∂tI|xt = x]∥p ≤ E∥∂tI∥p ≤ C(p)E∥x1 − x0∥p,

Moreover, since b(t, x) = v(t, x) + γ̇γs(t, x) and bF (t, x) = b(t, x) + ϵs(t, x),

E∥b(t, xt)∥p ≤ C(p)
[
E∥x1 − x0∥p + γ̇pdp/2

]
,

E∥bF (t, xt)∥p ≤ C(p)
[
E∥x1 − x0∥p + (γ̇p − γ−pϵp)dp/2

]
.

B.2 Bounds on Time and Space Derivatives

Note: In the following sections, we will use the fact that d
dtγ

2(t) = O(1) and d2

dt2 γ
2(t) = O(1).

Before we move on to the lemmas, we first discuss the conditional expectation itself. By the definition
xt = I(t, x0, x1) + γ(t)z, we can just know that the density of xt can be expressed as

ρ(t, x) =

∫
Rd×Rd

1

(2πγ(t)2)d/2
exp

(
−∥x− I(t, x0, x1)∥2

2γ(t)2

)
dν(x0, x1).

Also, under the condition xt = x, the conditional measure of (x0, x1) is then

1

ρ(t, x)
· 1

(2πγ(t)2)d/2
exp

(
−∥x− I(t, x0, x1)∥2

2γ(t)2

)
dν(x0, x1).
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Therefore, for any function ft(xt, x0, x1), its conditional expectation can be written as

E[ft(xt, x0, x1)|xt = x] =

∫
Rd×Rd

ft(x, x0, x1)

ρ(t, x)
· 1

(2πγ(t)2)d/2
exp

(
−∥x− I(t, x0, x1)∥2

2γ(t)2

)
dν(x0, x1)

=

E
(x0,x1)∼ν

[
exp

(
−∥x−I(t,x0,x1)∥2

2γ(t)2

)
· ft(x, x0, x1)

]
E

(x0,x1)∼ν

[
exp

(
−∥x−I(t,x0,x1)∥2

2γ(t)2

)] .

We first consider the time derivative of v in the sense of expectation.

Lemma 11. We have

E∥∂tv(t, xt)∥2 ≲ E∥∂2
t I∥2 + γ−2dE∥x0 − x1∥4 + γ−2γ̇4d3

for t ∈ (0, 1).

Proof. For t ∈ (0, 1), we can first explicitly write

v(t, x) =

E
(x0,x1)∼ν

[
exp

(
−∥x−I(t)∥2

2γ(t)2

)
· ∂tI(t)

]
E

(x0,x1)∼ν

[
exp

(
−∥x−I(t)∥2

2γ(t)2

)] .

Here we write I(t) = I(t, x0, x1) for simplicity, and below we will omit t when it is clear in the context.
We now want to compute ∂tv(t, x). First notice that

d
dt

[
exp

(
−∥x− I∥2

2γ2

)
· ∂tI

]
= exp

(
−∥x− I∥2

2γ2

)
·
[
∂2
t I + ∂tI ·

(
∥x− I∥2

γ(t)3
γ̇ +

x− I

γ2
· ∂tI

)]
.

Note that supx∈R exp(−x2/2)x = e−1/2 = C1 < ∞, supx∈R exp(−x2/2)x2 = 2e−1 = C2 < ∞, we know
that ∥∥∥∥ d

dt

[
exp

(
−∥x− I∥2

2γ2

)
· ∂tI

]∥∥∥∥ ≤ ∥∂2
t I∥+ C2γ

−1γ̇∥∂tI∥+ C1γ
−1∥∂tI∥2,

Therefore, using dominated convergence theorem, we know that

d
dt

E
(x0,x1)∼ν

[
exp

(
−∥x− I∥2

2γ2

)
· ∂tI

]
= E

(x0,x1)∼ν

[
d
dt

(
exp

(
−∥x− I∥2

2γ2

)
· ∂tI

)]
.

Similarly we can do this for the denominator, so that we can compute the overall derivative. Let
ft(x0, x1) = −∥x−I(t)∥2

2γ2 , for simplicity we may just write ft. Then,

∂tv(t, x) =

E
(x0,x1)∼ν

[
exp (ft) · ∂2

t I
]

E
(x0,x1)∼ν

[exp (ft)]

+

E
(x0,x1)∼ν

[exp (ft) · ∂tI · ∂tft]

E
(x0,x1)∼ν

[exp (ft)]

−
E

(x0,x1)∼ν
[exp (ft) · ∂tI] · E

(x0,x1)∼ν
[exp (ft) · ∂tft][

E
(x0,x1)∼ν

[exp (ft)]

]2
= E[∂2

t I|xt = x]

+ Cov(∂tI, ∂tft|xt = x),
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where the last equality uses the previous explanations of conditional expectations. Hence,

∥∂tv(t, x)∥ ≤ E[∥∂2
t I∥|xt = x] +

√
E[|∂tft|2|xt = x]

√
E[∥∂tI∥2|xt = x].

Therefore, we have

E∥∂tv(t, xt)∥2 ≤ 2E[E[∥∂2
t I∥2|xt]] + 2E[E[|∂tft|2|xt] · E[∥∂tI∥2|xt]] ((a+ b)2 ≤ 2a2 + 2b2)

≤ 2E∥∂2
t I∥2 + 2

√
E[E[|∂tft|2|xt]2] ·

√
E[E[∥∂tI∥2|xt]2] (Cauchy-Schwarz inequality)

≤ 2E∥∂2
t I∥2 + 2

√
E[E[|∂tft|4|xt]] ·

√
E[E[∥∂tI∥4|xt]] (Jensen’s inequality)

≤ 2E∥∂2
t I∥2 + 2

√
E|∂tft|4

√
E∥∂tI∥4.

Using the requirement ∂tI ≤ C∥x0 − x1∥ in the definition of stochastic interpolants, ∥∂tI∥4 ≲
∥x0 − x1∥4. For ∂tft, we can directly obtain

∂tf =
∥x− I∥2

γ3
γ̇ + γ−2(x− I) · ∂tI = γ−1γ̇∥z∥2 + γ−1z · ∂tI.

Recall that we have defined xt = I(t, x0, x1) + γ(t)z where z is an independent gaussian variable
z ∼ N (0, Id). By Lemma 8,

E∥z∥8 ≲ d4, E∥z∥4 ≲ d2,

we have
E|∂tft|4 ≲ (γ−1γ̇)4d4 + γ−4d2E∥x0 − x1∥4.

Therefore, we can finally deduce that

E∥∂tv(t, xt)∥2 ≲ E∥∂2
t I∥2 + γ−2dE∥x0 − x1∥4 + γ−2γ̇4d3.

In addition, we want to consider the space derivative of the velocity for a fixed t ∈ (0, 1). That is, we
want to give a bound for ∇v(t, x). Here we use the notation ∇v(t, x) to denote the Jacobian matrix(

d
dxi v(t, x)j

)
ij

, where xi represents the value of vector x at the i-th dimension.

Lemma 12. We have
E∥∇v(t, x)∥pF ≤ C(p)γ−pdp/2

√
E∥x0 − x1∥2p

for p ≥ 1, t ∈ (0, 1), where C(p) is a constant that only depends on p and ∥ · ∥F denotes the Frobenius
norm.

Proof. Similar to the proof of Lemma 11,

∇
(
exp

(
−∥x− I∥2

2γ2

)
· ∂tI

)
= exp

(
−∥x− I∥2

2γ2

)(
∂tI ⊗∇

(
−∥x− I∥2

2γ2

))
,

where ⊗ denotes the tensor product, which denotes ∂tI ⊗∇
(
−∥x−I∥2

2γ2

)
= ∂tI · ∇

(
−∥x−I∥2

2γ2

)T
here in

the matrix form. Again, by dominated convergence theorem we can move the gradient operator into the
expectation. Using the same notations (i.e., ft and so on), we can deduce that

∇v(t, x) =

E
(x0,x1)∼ν

[exp(ft) · (∂tI ⊗∇ft)]

E
(x0,x1)∼ν

[exp(ft)]

−
E

(x0,x1)∼ν
[exp(ft) · ∂tI]⊗ E

(x0,x1)∼ν
[exp(ft) · ∇ft][

E
(x0,x1)∼ν

[exp(ft)]

]2
= Cov(∂tI,∇ft|xt = x).
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Again, the last equality uses the definition of covariance. Thus, by Cauchy-Schwarz inequality,

∥∇v(t, x)∥F ≤
√
E[∥∂tI∥2|xt = x]

√
E[∥∇ft∥2|xt = x].

Therefore, we can use Cauchy-Schwarz inequality again and apply Jensen’s inequality to deduce that for
any p ≥ 1,

E∥∇v(t, xt)∥pF ≤
√

[E[E∥∂tI∥2|xt]]
p ·
√

[E[E∥∇ft∥2|xt]]
p

≤
√

E∥∂tI∥2p ·
√

E∥∇ft∥2p.

It is clear that E∥∂tI∥2p ≲ E∥x0 − x1∥2p. Note

∇ft = −x− I

γ2
= −γ−1z,

we then deduce that
E∥∇ft∥2p ≤ C(p)γ−2pdp

for some constant that only depends on p. The lemma is then obtained.

Despite the function v(t, x), we are also interested in the score function s(t, x). The following lemmas
provide some similar bounds for s(t, x).

Lemma 13.
E∥∂t (γs(t, xt)) ∥2 ≲ γ−2γ̇2d3 + γ−2d2

√
E∥x0 − x1∥4

and
E∥∂ts(t, xt)∥2 ≲ γ−4γ̇2d3 + γ−4d2

√
E∥x0 − x1∥4.

for any t ∈ (0, 1),

Proof. First using the analysis for the conditional expectations, we obtain that

s(t, x) = ∇ log ρ(t, x) = −
E

(x0,x1)∼ν

[
exp

(
−∥x−I∥2

2γ2

)
· x−I

γ2

]
E

(x0,x1)∼ν

[
exp

(
−∥x−I∥2

2γ2

)] .

In order to compute ∂t(γs(t, x)), we apply a similar analysis as the proof of Lemma 11 with exactly the
same notations to deduce that

∂ts(t, x) =

E
(x0,x1)∼ν

[exp(ft) · ∂t(γ∇ft)]

E
(x0,x1)∼ν

[exp(ft)]

+

E
(x0,x1)∼ν

[exp(ft) · ∂tft · γ∇ft]

E
(x0,x1)∼ν

[exp(ft)]

−
E

(x0,x1)∼ν
[exp(ft) · γ∇ft] · E

(x0,x1)∼ν
[exp(ft) · ∂tft][

E
(x0,x1)∼ν

[exp(ft)]

]2
= E[∂t(γ∇ft)|xt = x] + Cov(γ∇ft, ∂tft|xt = x)

The above term has exactly the same form as which in the proof of Lemma 11, so by a similar analysis
we can obtain that

E∥∂t(γs(t, xt))∥2 ≤ 2E∥∂t(γ∇ft)∥2 + 2
√

E|∂tft|4 ·
√

E∥γ∇ft∥4.
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We have already deduced that
E∥∇ft∥4 ≲ γ−4d2,

and
E|∂tft|4 ≲ (γ−1γ̇)4d4 + γ−4d2E∥x0 − x1∥4.

Also,

∂t(γ∇ft) = ∂t

(
−x− I

γ

)
= γ−1∂tI + γ−2γ̇(x− I) = γ−1∂tI + γ−1γ̇z

Hence,
E∥∂ts(t, xt)∥2 ≲ γ−2γ̇2d3 + γ−2d2

√
E∥x0 − x1∥4,

which completes the first part. The proof of the second part is exactly the same by replacing γ∇ft with
∇ft.

Lemma 14. For any p ≥ 1, there exists a constant C(p) < ∞ that only depends on p such that

E∥∇s(t, x)∥pF ≤ C(p)γ−2pdp.

Proof. With exactly the same ideas of the previous lemmas, we can obtain

∇s(t, x) = E[∇2ft|xt = x] + Cov(∇ft,∇ft|xt = x)

= −γ−2I + γ−2Cov(z, z|xt = x)

Then, for p ≥ 1, we have

E∥∇s(t, xt)∥pF ≤ 2p−1∥γ−2I∥pF + 2p−1γ−2pE∥E[∥z∥2|xt = x]∥p

≤ 2p−1γ−2pdp/2 + 2p−1γ−2pE∥z∥2p (Jensen’s inequality)

≤ C(p)γ−2pdp.

Here for the first inequality we have used the fact (a+ b)p ≤ 2p−1ap + 2p−1bp for a, b ≥ 0.

We also need some bounds for ∆s and ∆v, where ∆ represents the Laplace operator.

Lemma 15.
E∥∆v(t, xt)∥2 ≲ γ−2dE∥x0 − x1∥4 + γ−4d2

for all t ∈ (0, 1).

Proof. We still use the notations in the proof of Lemma 11. First, in the proof of Lemma 12, we have
already shown that

∂xiv(t, x) =

E
(x0,x1)∼ν

[exp(ft) · (∂tI · ∂xift)]

E
(x0,x1)∼ν

[exp(ft)]

−
E

(x0,x1)∼ν
[exp(ft) · ∂tI] · E

(x0,x1)∼ν
[exp(ft) · ∂xift][

E
(x0,x1)∼ν

[exp(ft)]

]2

=

E
(x0,x1)∼ν

[
E

(x0,x1)∼ν
[exp(ft) exp(f t)(∂tI − ∂tI) · (∂xift − ∂xif t)]

]
2 E
(x0,x1)∼ν

[
E

(x0,x1)∼ν
[exp(ft) exp(f t)]

] .
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The last equality is an alternative form of the covariance, and we use notations I = I(t, x0, x1) and
f t = ft(x0, x1) for intermediate variables (x0, x1). Hence,

∂2
xiv(t, x) = Cov(∂tI, ∂2

xift|xt = x)

+
1

2
Cov[(∂tI − ∂tI)(∂xift − ∂xif t), ∂xift + ∂xif t|xt = xt = x].

For the first term, note that ∂2
xift = −γ−2 is fixed. So,

∆v(t, x) =
1

2
Cov[(∂tI − ∂tI)(∇ft −∇f t),∇ft +∇f t|xt = xt = x].

Here the covariance refers to the expectation of dot product instead of the expectation of tensor product.
Then, use the fact E∥X − EX∥2 ≤ E∥X∥2, we know that

∥∆v(t, x)∥ ≤
√
E[
∥∥(∂tI − ∂tI)(∇ft −∇f t)

T
∥∥2 |xt = xt = x]

·
√
E[∥∇ft +∇f t∥2|xt = xt = x] (Cauchy-Schwarz inequality)

≲
[
E[
∥∥∂tI − ∂tI

∥∥4 |xt = xt = x]
]1/4

·
[
E[
∥∥∇ft −∇f t

∥∥4 |xt = xt = x]
]1/4

(Cauchy-Schwarz inequality)

·
√
E[∥∇ft∥2|xt = x] (by symmetry)

≲
[
E[∥∂tI∥4 |xt = x]

]1/4
·
√
E[∥∇ft∥4|xt = x]. (by symmetry)

Therefore,

E∥∆v(t, xt)∥2 ≲ E
[√

E[∥∂tI∥4 |xt = x] · E[∥∇ft∥4|xt = x]

]
≲

√
E
[
E[∥∂tI∥4 |xt = x]

]
·
√

E [E[∥∇ft∥4|xt = x]2] (Cauchy-Schwarz inequality)

≲ γ−4
√

E∥∂tI∥4 ·
√

E∥z∥8 (Jensen’s inequality)

≲ γ−4
√
E∥x0 − x1∥4 · d2

≲ γ−2dE∥x0 − x1∥4 + γ−4d2.

Lemma 16.
E∥∆s(t, x)∥2 ≲ γ−6d3

for t ∈ (0, 1).

Proof.
∇s(t, x) = −γ−2I + Cov(∇ft,∇ft|xt = x).

Hence, with similar calculations and notations as in the proof of Lemma 15, we can deduce that

∆s(t, x) = 2Cov(∇ft,∆ft|xt = x)

+
1

2
Cov[(∇ft −∇f t)(∇ft −∇f t)

T ,∇ft −∇f t|xt = xt = x].

=
1

2
Cov[(∇ft −∇f t)(∇ft −∇f t)

T ,∇ft −∇f t|xt = xt = x].
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Then, with Hölder’s inequality, we have

∥∆s(t, x)∥ ≲
[
E[∥∇ft −∇f t∥3|xt = xt = x]

]1/3
·
[
E[∥(∇ft −∇f t)(∇ft −∇f t)

T ∥3/2]
]2/3

≲
[
E[∥∇ft∥3|xt = x]

]1/3
(by symmetry)

·
[
E[∥∇ft −∇f t∥3|xt = xt = x]

]2/3
≲ E[∥∇ft∥3|xt = x]. (by symmetry)

Hence, by Jensen’s inequality,

E∥∆s(t, x)∥2 ≲ E[E[∥∇ft∥3|xt = x]2] ≲ γ−6E∥z∥6 ≲ γ−6d3.

C Omitted Proofs in Sections 4 and 5

C.1 Bounds along the forward Path
Recall the forward ODE

dXt = b(t,Xt)dt

and the forward SDE
dXF

t = bF (t,X
F
t )dt+

√
2ϵdWt.

Their solutions are denoted by Xt and XF
t , respectively. Using the chain rule or Itô’s formula, for a

function f(t, x) that is twice continuously differentiable, we have

df(t,Xt) = [∂tf(t,Xt) +∇f(t,Xt) · b(t,Xt)]dt,

and
df(t,XF

t ) = [∂tf(t,X
F
t ) +∇f(t,XF

t ) · bF (t,XF
t ) + ϵ∆f ]dt+

√
2ϵ∇f(t,XF

t ) · dWt.

With the above formula, we can now provide the following bound on the discretization error.

Lemma 17. For 0 < t0 ≤ t1 < 1, suppose ϵ = O(1), then,

E∥v(t0, XF
t0)− v(t1, X

F
t1)∥

2 ≲ (t1 − t0)
2
[
M2 + γ−6

mind
3 + γ−2

mind
√
E∥x0 − x1∥8

]
+ ϵ(t1 − t0)γ

−2
mind

√
E∥x0 − x1∥4,

and

E∥s(t0, XF
t0)− s(t1, X

F
t1)∥

2 ≲ (t1 − t0)
2
[
γ−4
mind

2
√

E∥x0 − x1∥4 + γ−6
mind

3
]
+ ϵ(t1 − t0)γ

−4
mind

2.

Here we denote γmin = minu∈[t0,t1] γ.

Proof. According to the formula

dv(t,XF
t ) = [∂tv(t,X

F
t ) +∇v(t,XF

t ) · bF (t,XF
t ) + ϵ∆v(t,XF

t )]dt+
√
2ϵ∇v(t,XF

t ) · dWt,
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we know that

∥v(t1, XF
t1)− v(t0, X

F
t0)∥

2 ≤ 4

∥∥∥∥∫ t1

t0

∂uv(u,X
F
u )du

∥∥∥∥2
+ 4

∥∥∥∥∫ t1

t0

∇v(u,XF
u ) · b(u,XF

u )du
∥∥∥∥2

+ 4

∥∥∥∥∫ t1

t0

ϵ∆v(u,XF
u )du

∥∥∥∥2
+ 4

∥∥∥∥∫ t1

t0

√
2ϵ∇v(u,XF

u ) · dWu

∥∥∥∥2 .
For the first three terms, by Jensen’s inequality we know that for any function Y , we have∥∥∥∥∫ t1

t0

Y (u)du

∥∥∥∥2 ≤ (t1 − t0)

∫ t1

t0

∥Y (u)∥2du.

For the last term, use Itô’s isometry (Le Gall 2016, Equation 5.8), we can get

E

[∥∥∥∥∫ t1

t0

√
2ϵ∇v(u,XF

u ) · dWu

∥∥∥∥2
]
=

∫ t1

t0

E∥
√
2ϵ∇v(u,XF

u )∥2F du.

Therefore, we can use Fubini’s theorem to change the order of expectation and integral, and combine
the results of Lemma 11, 12, 15 and 10 and Assumption 1 to get

∥v(t1, XF
t1)− v(t0, X

F
t0)∥

2 ≲ (t1 − t0)

∫ t1

t0

E∥∂uv(u,Xu)∥2du

+ (t1 − t0)

∫ t1

t0

[
γ2
mind

−1E∥∇v(u,Xu)∥4 + γ−2
mindE∥bF (u,Xu)∥4

]
du

+ ϵ2(t1 − t0)

∫ t1

t0

E∥∆v(u,Xu)∥2du

+ 2ϵ

∫ t1

t0

E∥∇v(u,XF
u )∥2Fdu

≲ (t1 − t0)
2
[
M2 + γ−6

mind
3 + γ−2

mind
√
E∥x0 − x1∥8

]
+ ϵ(t1 − t0)γ

−2d1
√
E∥x0 − x1∥4

Note that we have already used the condition γ2 ∈ C2[0, 1] and γγ̇ = O(1).
Similarly, we can use Lemma 13, 14, 16 and 10, and the formula

ds(t,XF
t ) = [∂ts(t,X

F
t ) +∇s(t,XF

t ) · bF (t,XF
t ) + ϵ∆s(t,XF

t )]dt+
√
2ϵ∇s(t,XF

t ) · dWt

to bound

E∥s(t1, XF
t1)− s(t0, X

F
t0)∥

2 ≲ (t1 − t0)
2
[
γ−4
mind

2
√

E∥x0 − x1∥4 + γ−6
mind

3
]
+ ϵ(t1 − t0)γ

−4
mind

2,

where γmin = minu∈[s,t] γ.

C.2 Proof of Theorem 3
We first give the following proposition, which is a result from Chen et al. (2023d).
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Proposition 18. (Section 5.2 of Chen et al. (2023d)) Let P , Q be the path measures of solutions of
SDE (3) and (6), where they both start from the same distribution ρ(t0) at time t = t0 and end at time
t = tN . Then, if

E[∥bF (t,XF
t )− b̂F (tk, X

F
tk
)∥2] ≤ C

for any t ∈ [t0, tN ] and some constant C, we have

KL(P∥Q) =
1

4ϵ

N−1∑
k=0

∫ tk+1

tk

E[∥bF (t,XF
t )− b̂F (tk, X

F
tk
)∥2]dt.

Here the expectations are taken over the ground-truth forward process (XF
t )t∈[t0,tN ] ∼ P .

Now, using the above proposition, we are ready to prove Theorem 3.

Proof. Let P , Q be the path measures of the solutions to the SDE (3) and (6), where the solutions
start from the same distribution ρ(t0) at time t = t0, as in Proposition 18. We first want to check the
condition of Proposition 18. Note that

E∥b̂F (tk, XF
tk
)− bF (t,X

F
t )∥2

(a)

≤ 2E∥b̂F (tk, XF
tk
)− bF (tk, X

F
tk
)∥2 + 2E∥bF (tk, XF

tk
)− bF (t,X

F
t )∥2

(b)

≤ 2E∥b̂F (tk, XF
tk
)− bF (tk, X

F
tk
)∥2 + 4E∥v(tk, XF

tk
)− v(t,XF

t )∥2

+ 4E∥(−γ(tk)γ̇(tk) + ϵ)s(tk, X
F
tk
)− (−γ(tk)γ̇(tk) + ϵ)s(t,XF

t )∥2

(c)

≤ 2E∥b̂F (tk, XF
tk
)− bF (tk, X

F
tk
)∥2 + 4E∥v(tk, XF

tk
)− v(t,XF

t )∥2

+ 8(−γ(tk)γ̇(tk) + ϵ)2E∥s(tk, XF
tk
)− s(t,XF

t )∥2

+ 8(γ(t)γ̇(t)− γ(tk)γ̇(tk))
2E∥s(t,XF

t )∥2.

Here (a), (b) and (c) use the triangle inequality and the fact (a+ b)2 ≤ a2 + b2. By Lemmas 10 and 17,
this term is uniformly bounded in the closed interval [t0, tN ]. In fact, we can apply these lemmas to
obtain that

E∥b̂F (tk, XF
tk
)− bF (t,X

F
t )∥2

(a)
≲ E∥b̂F (tk, XF

tk
)− bF (tk, X

F
tk
)∥2

+ (t− tk)
2
[
M2 + γ−6

k d3 + γ−2
k d

√
E∥x0 − x1∥8

]
+ ϵ(t− tk)γ

−2
k d

√
E∥x0 − x1∥4

+ (t− tk)
2
[
γ−4
k d2

√
E∥x0 − x1∥4 + γ−6

k d3
]
+ ϵ(t− tk)γ

−4
k d2

+ (t− tk)
2γ−2

k d

(b)
≲ E∥b̂F (tk, XF

tk
)− bF (tk, X

F
tk
)∥2

+ (t− tk)
2
[
M2 + γ−6

k d3 + γ−2
k d

√
E∥x0 − x1∥8

]
+ ϵ(t− tk)γ

−2
k d

[√
E∥x0 − x1∥4 + γ−2

k d
]
.

Here step (a) directly expands the discretization error using Lemmas 10 and 17; step (b) simplifies the
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terms by applying Young’s inequality and that 1 + ϵ2 = O(1). Then, by Proposition 18,

KL(P∥Q) =
1

4ϵ

N−1∑
k=0

∫ tk+1

tk

E[∥bF (t,XF
t )− b̂F (tk, X

F
tk
)∥2]dt

(a)
≲ ε2bF + ϵ−1

N−1∑
k=0

(tk+1 − tk)
3
[
M2 + γ−6

k d3 + γ−2
k d

√
E∥x0 − x1∥8

]
+

N−1∑
k=0

(tk+1 − tk)
2γ−2

k d
[√

E∥x0 − x1∥4 + γ−2
k d

]
.

Here step (a) just integrates over the upper bound of the disretization error. Now, consider KL(ρ(tN )∥ρ̂(tN )).
Let Q̂ be the path measure of solutions of (6) starting from ρ̂(t0) instead of ρ(t0). Then,

KL(ρ(tN )∥ρ̂(tN )) ≤ KL(P∥Q̂) = EP

[
log

dP
dQ̂

(X)

]
= EP

[
log

(
dP
dQ

(X) · dQ
dQ̂

(X)

)]
= EP

[
log

dP
dQ

(X)

]
+ EP

[
log

dρ(t0)
dρ̂(t0)

(Xt0)

]
= KL(P∥Q) + KL(ρ(t0)∥ρ̂(t0)).

The proof is then completed.

C.3 Proof of Proposition 4
Proof. Using the results of Theorem 3,

KL(ρ(tN )∥ρ̂(tN ))
(a)
≲ ε2bF + KL(ρ(t0)∥ρ̂(t0)) + ϵ−1

N−1∑
k=0

(tk+1 − tk)
3
[
M2 + γ−6

k d3 + γ−2
k d

√
E∥x0 − x1∥8

]
+

N−1∑
k=0

(tk+1 − tk)
2γ−2

k d
[√

E∥x0 − x1∥4 + γ−2
k d

]
(b)
≲ ε2bF + KL(ρ(t0)∥ρ̂(t0)) + ϵ−1

N−1∑
k=0

[
M2h

3
k + h3d3 + hh2

kd
√
E∥x0 − x1∥8

]
+

N−1∑
k=0

[
hhkd

√
E∥x0 − x1∥4 + h2d2

]
(c)
≲ ε2bF + KL(ρ(t0)∥ρ̂(t0)) + ϵ−1h2

(
M2 + d

√
E∥x0 − x1∥8

)
+ ϵ−1Nh3d3

+ hd
√
E∥x0 − x1∥4 +Nh2d2

(d)
≲ ε2bF + KL(ρ(t0)∥ρ̂(t0)) + hd

√
E∥x0 − x1∥4 +Nh2d2.

Here step (a) is the result of Theorem 3; step (b) uses the fact hk = tk+1 − tk = O(hγ2
k); step (c) uses

the fact
∑N−1

k=0 hk = tN − t0 ≤ 1; step (d) omits the higher-order terms.

C.4 Proof of Corollary 5
Proof. When the number of steps is N , we have

h = Θ

(
N−1 log

(
1

t0(1− tN )

))
.
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Then, by Corollary 4 and the assumptions,

KL(ρ(tN )∥ρ̂(tN )) ≲ ε2 +N−1

[
d
√
E∥x0 − x1∥4 log

(
1

t0(1− tN )

)
+ d2 log2

(
1

t0(1− tN )

)]
.

This gives the complexity to to make KL(ρ(tN )∥ρ̂(tN )) ≲ ε2.

C.5 Reducing to Diffusion Models
By modifying the definition of stochastic interpolant to

xt = I(t, x1) + γ(t)z

and change the condition on I to ∥∂tI(t, x1)∥ ≤ C∥x1∥, we can repeat the previous analysis while
replacing

√
E∥x0 − x1∥p by

√
E∥x1∥p. For the case of diffusion models, we can choose I(t, x1) = tx1

and γ(t) =
√
1− t2 to obtain a process with the same marginal distributions. Moreover, under this

definition of interpolants, we can choose t0 = 0 and hk = tk+1 − tk ∝ (1− tk) as the time schedule to
recover the sample complexity of diffusion models.

C.6 Omitted Proofs for γ2(t) = (1− t)2t

In this section, we will design a schedule for γ2(t) = (1− t)2t, and provide the corresponding complexity
deduced using Theorem 3. Moreover, we also derived the complexity of using a uniform schedule for
comparison.

Corollary 19. For γ2(t) = (1 − t)2t, there exists a schedule so that under the same assumptions as
Corollary 5, the complexity is given by

N = O

(
1

ε2

[√
E∥x0 − x1∥4d

(
1√

1− tN
+ log

(
1

t0

))
+ d2

(
1

(1− tN )2
+ log2

(
1

t0

))])
.

In addition, the complexity for using a uniform schedule is

N = O

(
1

ε2

[√
E∥x0 − x1∥4d

(
1

1− tN
+ log

(
1

t0

))
+ d2

(
1

(1− tN )3
+

1

t0

)])
.

Proof. Here we also take hM = 0.5 for some M > 0. Then, we define

hk =

{
hA · tk+1, k < M

hB · (1− tk)
1.5, k ≥ M.

for some hA ∈ [0, 0.5), hB ∈ [0, 1). For the part k < M and tk ∈ [0, 0.5), γ2(tk) = Θ(tk), so it is the
same as what we have discussed for the case, and we need

M = N1 = O

(
1

ε2

[√
E∥x0 − x1∥4d log

(
1

t0

)
+ d2 log2

(
1

t0

)])
steps to make the discretization error

ε2bF +

M−1∑
k=0

(tk+1 − tk)
3
[
M2 + γ−6

k d3 + γ−2
k d

√
E∥x0 − x1∥8

]
+

M−1∑
k=0

(tk+1 − tk)
2γ−2

k d
[√

E∥x0 − x1∥4 + γ−2
k d

]
≲ ε2.
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For the part k ≥ M ,

N−1∑
k=M

(tk+1 − tk)
3
[
M2 + γ−6

k d3 + γ−2
k d

√
E∥x0 − x1∥8

]
= O(h2

B),

and by that hk = Θ(hBγ
1.5
k ) = Θ(hB(1− tk)

1.5) (use in step (a) below),

N−1∑
k=M

h2
kγ

−2
k d

[√
E∥x0 − x1∥4 + γ−2

k d
]

(a)
≲ hB

N−1∑
k=M

hk

[
d
√
E∥x0 − x1∥4γ−0.5

k + γ−2.5
k d2

]
(b)
≲ hB

[
d
√
E∥x0 − x1∥4

∫ tN

0.5

(1− s)−0.5ds+ d2
∫ tN

0.5

(1− s)−2.5ds
]

≲ hB

[
d
√
E∥x0 − x1∥4 + d2

1

(1− tN )1.5

]
.

Here the inequality (b) is by that γk = Θ(1− t) for t ∈ [tk, tk+1]. Now, we want to compute the number
of steps N2 = N −M for the part k ≥ M . Note that if tk = 1− 2−p, it takes O(2p/2h−1

B ) more steps
to reach 1− 2−p−1. Hence N2 = O

(
h−1
B (1− tN )−0.5

)
, so we need to take hB = Θ

(
N−1(1− tN )−0.5

)
.

Therefore,
N−1∑
k=M

h2
kγ

−2
k d

[√
E∥x0 − x1∥4 + γ−2

k d
]

≲ N−1

[
d
√
E∥x0 − x1∥4√
1− tN

+
d2

(1− tN )2

]
.

Thus, for the part k > M , we need

N −M = N2 = O

(
1

ε2

(
d
√

E∥x0 − x1∥4√
1− tN

+
d2

(1− tN )2

))

steps to make the discretization error bounded by O(ε2). Hence, the overall complexity is given by
N = N1 +N2, which is our result.

If we use a uniform schedule, by Theorem 3 and that γ2(t) = Θ(min{t, (1− t)2}), we can bound

KL(ρ(tN )∥ρ̂(tN ))
(a)
≲ ε2bF + KL(ρ(t0)∥ρ̂(t0))

+
1

N

√
E∥x0 − x1∥4d

(∫ 0.5

t0

s−1ds+
∫ tN

0.5

(1− s)−2ds
)

+
1

N
d2
(∫ 0.5

t0

s−2ds+
∫ tN

0.5

(1− s)−4ds
)

≲ ε2bF + KL(ρ(t0)∥ρ̂(t0))

+
1

N

√
E∥x0 − x1∥4d

(
1

1− tN
+ log

(
1

t0

))
+

1

N
d2
(

1

(1− tN )3
+

1

t0

)
,

which further gives the complexity bound for uniform schedule. Here the inequality (a) is by applying
Theorem 3 and replacing γk with the term of the same order. This bound is worse than using the
schedule satisfying that hk ≲ hγk.
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D More Details of Numerical Experiments

To parameterize the estimator b̂F (t, x) for two-dimensional data, we utilize a simple multilayer perceptron
(MLP) network. The input of the network comprises a three-dimensional vector (x, t), and its output is
a two-dimensional vector b̂F (t, x). The MLP architecture consists of three hidden layers, each with 256
neurons, followed by ReLU activation functions Nair and Hinton (2010).

To train the estimator b̂F (t, x), we leverage a simple quadratic objective (see Appendix A for details)
whose optimizer is the real drift bF (t, x). Given the estimator, data batches, and sampled time points,
we are ready to compute an empirical loss. We employ the Adam optimizer Kingma and Ba (2015) to
train the network using the gradient computed on the empirical loss.

We set t0 = 0.001 and tN = 0.999 to ensure that the initial density ρ(t0) is close to ρ0 and the
estimated density ρ(tN ) closely approximates ρ1. We implement the discretized sampler as defined in
Equation (7). We use more than 10, 000 data samples to empirically visualize the densities in Figures 1,
2a and 2b.

In addition, for TV distance estimation used in Figures 3a and 3b, we utilize 60, 000 samples from
both the target density and the generated densities, partition the area [−10, 10] × [−10, 10] into a
100× 100 grid, and estimate the true density function based on the number of samples within each cell.

Figure 4: Estimated TV distance for different step size schedules, where we use γ2(t) = (1− t)2t. The
red curve denotes the distance when we use the schedule designed in Appendix C.6, while the green
curve denotes the distance when we use the uniform schedule.

D.1 Additional Experiments for γ(t) =
√

(1− t)2t

We implement the schedule discussed in Appendix C.6 and compare it to the uniform schedule. We
choose (t0, tN ) = (0.001, 0.97) since γ2(t) is Θ((1− t)2) near t = 1. We choose ρ0 as the “checkerboard"
density and ρ1 as the “spiral" density. We estimate the TV distance TV(ρ(tN )∥ρ̂(tN )) to indicate how
close the estimated distribution is to the target distribution. The comparison is shown in Figure 4.
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